NENA
Recommended Generic Standards for E9-1-1 PSAP Intelligent Workstations

This DRAFT document is not intended for distribution beyond the groups developing or reviewing the document. The document is also not intended to be used or referenced for development or procurement purposes until final publication. All draft material is subject to change and it is possible that the document itself may never be approved for publication.

Recommended Generic Standards for E9-1-1 PSAP Intelligent Workstations

NENA-STA-028.2-201X (originally NENA 04-004)
DSC Approval: MM/DD/YYYY
PRC Approval: MM/DD/YYYY
NENA Executive Board Approval: MM/DD/YYYY
Next Scheduled Review Date: MM/DD/YYYY (See ADM-002 Section 7.3.1 for details. The review date will be recommended by the Authoring Committee and once approved the date will be identified on the cover page of the document. Minimum 1 yr / Maximum 3-5 yrs)

Prepared by:
National Emergency Number Association (NENA), Agency Systems Committee, Document Review Working Group

Published by NENA
Printed in USA
This Standard Document (STA) is published by the National Emergency Number Association (NENA) as an information source for 9-1-1 System Service Providers, network interface vendors, system vendors, telecommunication service providers, and 9-1-1 Authorities. It is not intended to provide complete design or operation specifications or parameters or to assure the quality of performance for systems that process such equipment or services.

NENA reserves the right to revise this Standard Document for any reason including, but not limited to:

- Conformity with criteria or standards promulgated by various agencies,
- Utilization of advances in the state of the technical arts,
- Reflecting changes in the design of equipment, network interfaces, or services described herein.

This document is an information source for the voluntary use of communication centers. It is not intended to be a complete operational directive.

It is possible that certain advances in technology or changes in governmental regulations will precede these revisions. All NENA documents are subject to change as technology or other influencing factors change. Therefore, this NENA document should not be the only source of information used. NENA recommends that readers contact their 9-1-1 System Service Provider (9-1-1 SSP) representative to ensure compatibility with the 9-1-1 network, and their legal counsel, to ensure compliance with current regulations.

Patents may cover the specifications, techniques, or network interface/system characteristics disclosed herein. No license is granted, whether expressed or implied. This document shall not be construed as a suggestion to any manufacturer to modify or change any of its products, nor does this document represent any commitment by NENA, or any affiliate thereof, to purchase any product, whether or not it provides the described characteristics.

By using this document, the user agrees that NENA will have no liability for any consequential, incidental, special, or punitive damages arising from use of the document.

NENA’s Committees have developed this document. Recommendations for changes to this document may be submitted to:

National Emergency Number Association
1700 Diagonal Rd, Suite 500
Alexandria, VA 22314
202.466.4911
or commleadership@nena.org

© Copyright YYYY National Emergency Number Association, Inc.
Document Terminology

This section defines keywords, as they should be interpreted in NENA documents. The form of emphasis (UPPER CASE) shall be consistent and exclusive throughout the document. Any of these words used in lower case and not emphasized do not have special significance beyond normal usage.

1. **MUST, SHALL, REQUIRED:** These terms mean that the definition is a normative (absolute) requirement of the specification.
2. **MUST NOT:** This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.
3. **SHOULD:** This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.
4. **SHOULD NOT:** This phrase, or the phrase "NOT RECOMMENDED" means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.
5. **MAY:** This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option “must” be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option “must” be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides.)

These definitions are based on IETF RFC 2119.
Intellectual Property Rights (IPR) Policy

NOTE – The user’s attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights. By publication of this standard, NENA takes no position with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from NENA by contacting the Committee Resource Manager identified on NENA’s website at www.nena.org/ipr.

Consistent with the NENA IPR Policy, available at www.nena.org/ipr, NENA invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard.

Please address the information to:
National Emergency Number Association
1700 Diagonal Rd, Suite 500
Alexandria, VA 22314
202.466.4911
or commleadership@nena.org

Reason for Issue/Reissue

NENA reserves the right to modify this document. Upon revision, the reason(s) will be provided in the table below.

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Approval Date</th>
<th>Reason For Issue/Reissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>NENA 04-004</td>
<td>06/16/2000</td>
<td>Initial Document</td>
</tr>
<tr>
<td>NENA-STA-028.2-201X</td>
<td>[MM/DD/YYYY]</td>
<td>Updated to conform to current Standard (STA) document and update references.</td>
</tr>
</tbody>
</table>

[MM/DD/YYYY]
Table of Contents

1 EXECUTIVE OVERVIEW ... 7
2 E9-1-1 PSAP INTELLIGENT WORKSTATIONS ... 7
3 PSAP INTERFACES .. 7
 3.1 COMPUTER AIDED DISPATCH (CAD) INTERFACE ... 8
 3.1.1 Integration .. 8
 3.2 RECORDERS AND PRINTERS INTERFACE ... 11
 3.2.1 Recorders ... 11
 3.2.2 Printers ... 11
 3.3 ALI DISPLAY INTERFACE ... 11
 3.4 PSAP TIME SYNCHRONIZATION INTERFACE .. 12
 3.5 REMOTE DATA TRANSFER INTERFACE .. 12
 3.5.1 LAN/WAN Connectivity ... 12
 3.6 1A2 KEY TELEPHONE SYSTEM INTERFACE ... 12
 3.7 TELEPHONE ANALOG AUDIO INTERFACE .. 12
 3.8 TELEPHONE AUDIO INTERFACE (FOR DIGITAL TELEPHONE SETS) 12
 3.9 RADIO/TELEPHONE HEADSET INTERFACE ... 13
 3.10 PSAP ALARMS .. 13
 3.10.1 IWS Specifications ... 13
 3.11 TDD/TTY INTERFACE .. 13
 3.12 TRANSPORT CONTROL PROTOCOL/INTERNET PROTOCOL (TCP/IP) 14
 3.13 PHYSICAL INTERFACES .. 14
 3.14 INTELLIGENT WORKSTATION INTEGRATION ... 14
4 PSAP FEATURE REQUIREMENT SPECIFICATIONS .. 14
 4.1 TELEPHONE FUNCTIONS ... 14
 4.1.1 Queuing (Optional) ... 15
 4.2 PRE-RECORDED GREETINGS (OPTIONAL) .. 15
 4.3 AUTOMATIC NUMBER / LOCATION IDENTIFICATION ... 15
 4.3.1 Field Triggered Features .. 15
 4.4 FEATURE BUTTONS ... 16
 4.5 CALL DETAILING ... 16
 4.6 LANGUAGE SELECTION .. 16
 4.7 MESSAGE BOARD .. 16
 4.8 CALL TRANSFER FUNCTIONS ... 16
 4.9 TDD/TTY FUNCTIONALITY .. 16
 4.10 MANAGEMENT INFORMATION SYSTEM (MIS) ... 16
5 POWER REQUIREMENTS ... 17
6 PHYSICAL AND ELECTRICAL ENVIRONMENT REQUIREMENTS ... 17
7 INSTALLATION, MAINTENANCE AND ADMINISTRATION ... 17
 7.1 INTERFACE-SYSTEM COMMANDS MAINTENANCE EVENT LOG (OPTIONAL) 17
 7.1.1 User Interface Event Log .. 17
 7.1.2 External Interface Event Log .. 18
 7.2 REMOTE MAINTENANCE ... 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>REGISTRATION REQUIREMENTS</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>QUALITY AND RELIABILITY</td>
<td>18</td>
</tr>
<tr>
<td>9.1</td>
<td>Reliability Objectives</td>
<td>18</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Backup and Restoration</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>NENA REGISTRY SYSTEM (NRS) CONSIDERATIONS</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>DOCUMENTATION REQUIRED FOR THE DEVELOPMENT OF A NENA XML SCHEMA</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>IMPACTS, CONSIDERATIONS, ABBREVIATIONS, TERMS, AND DEFINITIONS</td>
<td>19</td>
</tr>
<tr>
<td>12.1</td>
<td>OPERATIONS IMPACTS SUMMARY</td>
<td>19</td>
</tr>
<tr>
<td>12.2</td>
<td>TECHNICAL IMPACTS SUMMARY</td>
<td>19</td>
</tr>
<tr>
<td>12.3</td>
<td>SECURITY IMPACTS SUMMARY</td>
<td>19</td>
</tr>
<tr>
<td>12.4</td>
<td>RECOMMENDATION FOR ADDITIONAL DEVELOPMENT WORK</td>
<td>20</td>
</tr>
<tr>
<td>12.5</td>
<td>ANTICIPATED TIMELINE</td>
<td>20</td>
</tr>
<tr>
<td>12.6</td>
<td>COST FACTORS</td>
<td>20</td>
</tr>
<tr>
<td>12.7</td>
<td>COST RECOVERY CONSIDERATIONS</td>
<td>20</td>
</tr>
<tr>
<td>12.8</td>
<td>ADDITIONAL IMPACTS (NON-COST RELATED)</td>
<td>20</td>
</tr>
<tr>
<td>12.9</td>
<td>ABBREVIATIONS, TERMS, AND DEFINITIONS</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>RECOMMENDED READING AND REFERENCES</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>ACKNOWLEDGEMENTS</td>
<td>21</td>
</tr>
</tbody>
</table>
1 Executive Overview

This NENA Standard NENA-STA-028 updates the original NENA 04-004 Recommended Generic Standards for E9-1-1 PSAP Intelligent Workstations. It defines the Public Safety Answering Point (PSAP) Intelligent Workstation (IWS) equipment requirements intended for use by users, manufactures and providers of E9-1-1 Customer Premise Equipment (CPE).

This standard is a guide for designers and manufacturers of E9-1-1 PSAP equipment. It defines conditions and identifies engineering and technical requirements to be considered before the purchase of such equipment. It may also be of value to purchasers, maintainers and users of such equipment.

This document is not intended to provide complete design specifications for PSAP equipment. It will neither ensure the quality of the performance of the equipment nor should it serve as an exclusive procurement specification.

2 E9-1-1 PSAP Intelligent Workstations

The E9-1-1 system and feature overview for PSAP’s using Intelligent Workstation equipment is as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2].

3 PSAP Interfaces

The PSAP equipment will provide several interfaces in accordance with the following interface specifications.
All existing interfaces unless noted below are as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] and NENA-STA-026 (originally NENA 04-002) PSAP Master Clock Standard [3].

3.1 Computer Aided Dispatch (CAD) Interface
In addition to the traditional CAD interface Intelligent Workstations can provide a greater degree of interfacing or integration.

The physical, electrical and protocols can remain as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2]. In addition, it can also be through new protocols such as described in the TCP/IP section of this document, or internal messages through the operating system or applications.

3.1.1 Integration
Intelligent Workstations resolve many of the new issues facing PSAP's today, however they can also create some of their own. Specifically, the problems that stem from many separate computer and
network systems, those being CAD, Radio, Mapping and IWS, to name a few. Some of the issues that can be easily overcome with Intelligent Workstations are as follows.

- **Space Constraints**
 - Multiple Keyboards, Monitors & Computers

- **Work Constraints**
 - Disperse information
 - Duplication of information

- **Technology Constraints**
 - Multiple Operating Systems
 - Multiple System Vendors

There are a number of integration levels feasible with the use of IWS and these other systems. Depending upon the various systems in place different levels are achievable. The various levels are described below.

3.1.1.1 Basic Integration

Basic Integration comes in two possible configurations both using a device called an arbitrator. The first configuration allows for the same keyboard to access multiple computers, also known as CPU’s. When running on compatible PC’s, this allows the same keyboard for the IWS & other systems.

The second configuration allows for the same keyboard and monitor to access multiple CPU’s. When running on compatible PC’s, this allows the same keyboard and monitor for the IWS & other systems.

Caution: Similar commands between applications could cause undesired results. Please consult vendors to ensure compatibility between applications to minimize problems.

While this level of integration reduces the number of devices used by the call taker, it still uses a manual method of switching which causes momentary delays during the transition from one application to another.

Caution: To avoid problems caused by these delays, care should be taken to allow switching of applications to complete.

3.1.1.2 Enhanced Integration

Enhanced Integration provides a higher level of usability over the basic type described above. Along with this however, comes a higher level of responsibility for both the vendors of the IWS & other systems, and the companies providing the service to the PSAP’s.

With most systems running in a "Host" environment it is possible to replace the terminals that are used today with an emulation package on the PC used for the IWS. This solution allows the use of the same keyboard and monitor for both the IWS & other systems, but without the need for a manual switch box to change from one application to another.
This "Host Connectivity" and "Terminal Emulation" can be achieved via a number of different connections, eg., Serial Connection, Telnet, or SNA Server. Examples of terminals that could be supported are:

- RISC - 3151
- DEC VT100, 220, 320
- UNIX Telnet
- IBM 3270, 5250

With this type of Integration, the IWS PC can support multiple monitors, allowing each terminal session to reside on an individual or shared monitor. This still allows one keyboard and pointing device to control the various applications running without the need for manual switching between applications.

Caution: Similar commands between applications could cause undesired results. Please consult vendors to ensure compatibility between applications to minimize problems. Additional call taker training will be required to use multiple applications in a windowed environment.

3.1.1.3 Intelligent Integration

Intelligent integration can allow for a complete integration between various applications residing on the IWS. This type of integration can resolve the work constraints that face the PSAP today. This includes such things as diversification and duplication of information, and potentially providing a seamless interface between multiple public safety applications.

This can be achieved in a number of different ways, which are dependent upon the various applications and the technologies used. These could include sharing of common databases, or configuration tools through technologies such as API's (Application Program Interfaces) or various database protocols.

Due to the vast extent of possibilities that exist, it is recommended that PSAP’s have the 911-system vendor/integrator recommend and approve the Intelligent Workstation computer hardware requirements. This should be based upon the various applications required to run on the Intelligent Workstation.

These recommendations must be reviewed and re-approved when any changes are made to the baseline system configuration delivered as well as changes made to external applications that interface with the IWS.

The PSAP must recognize that the number one priority of the Intelligent Workstation is the processing of the 911 call. No third-party applications must interfere or interrupt this operation.
3.2 Recorders and Printers Interface

3.2.1 Recorders

3.2.1.1 Instant Call Check Recorders / Instant Recall Recorders (IRR)
With Intelligent Workstations, the call check recorder function may be integrated within the telephony application program or other complimentary application program(s) running on the workstation or a server. However, if the IWS or server application programs do not provide call check recorder functionality, it/they shall provide traditional physical and electrical interfaces for an external call check device, as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2].

3.2.1.2 Logging Recorders
With Intelligent Workstations, the logging recorder function may be integrated within the telephony application program or other complimentary application program(s) running on the workstation or a server. However, if the IWS or server application programs do not provide logging recorder functionality, it/they shall provide traditional physical and electrical interfaces for a logging recorder device, as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2].

3.2.2 Printers
Printers are used in conjunction with 9-1-1 CPE to provide documents such as Call Detail Records (CDR), on-demand ALI prints, MIS reports, etc. With IWS, configuration of printers can be made in a variety of ways including, local (each workstation) or networked/shared (print server). Regardless of the purpose or configuration, the physical and electrical interfaces for IWS printers remain the same as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2].

ANI Display Interface
In addition to the traditional interfaces for ANI displays, Intelligent Workstations can provide a greater degree of interfacing or integration.

The physical and electrical interfaces and protocols can remain as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2]. In addition, new protocols such as described in the TCP/IP section of this document, or internal messages through the operating system or applications can be used.

3.3 ALI Display Interface
In addition to the traditional interfaces for ALI displays, Intelligent Workstations can provide a greater degree of interfacing or integration.

The physical and electrical interfaces and protocols can remain as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2]. In addition, new protocols such as described in the TCP/IP section of this document, or internal messages through the operating system or applications can be used.
3.4 PSAP Time Synchronization Interface

It is important that all applications on the Intelligent Workstation have the same time stamp for a particular event. Furthermore, it is a requirement to have all workstations synchronize with a master clock device in compliance with NENA-STA-026 (originally NENA 04-002) PSAP Master Clock Standard [3].

3.5 Remote Data Transfer Interface

It is desirable that E9-1-1 Customer Premises Equipment have the option to be equipped with modems and/or facsimile machines. Those modems/facsimile machines are used to transmit information to a remote location. The user interface allows the PSAP attendant to manually execute a data transfer. The PSAP equipment shall provide attendant with positive and/or negative feedback on the data transfer.

The remote connection can be achieved through any means available to the PSAP, including, but not limited to the Public Switched Telephone Network (PSTN), through a dedicated link, or via a local area network (LAN) or wide area network (WAN) connection.

The NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] document describes both the modem and facsimile protocols. In addition, new protocols such as described in the TCP/IP section of this document, or internal messages through the operating system or applications can be used.

3.5.1 LAN/WAN Connectivity

Based on existing technologies a multitude of data transfer solutions exist. These technologies include, but are not limited to TCP/IP as described in the TCP/IP section (Section 3.13 Page 14) of this document. The specific protocols and interfaces will be dependent upon the network technology deployed.

3.6 1A2 Key Telephone System Interface

It is desirable that Intelligent Workstations have the capability to interface to 1A2 key telephones system as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2]. It is also desirable that Intelligent Workstations have the ability to interface to other telephone systems, both mentioned in the same document and solutions that were developed and documented.

3.7 Telephone Analog Audio Interface

NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] describes all interfaces required for the telephone analog audio interface. The telephone system provider shall provide this interface if the telephone system does not support an integrated TDD/TTY and recall recorder functionality that complies with the recommendations made in this document.

3.8 Telephone Audio Interface (For Digital Telephone Sets)

NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] describes all interfaces required for the telephone audio interface. The telephone system provider shall provide this interface if the telephone system does not support an integrated TDD/TTY and recall recorder functionality that complies with the recommendations made in this document.
3.9 Radio/Telephone Headset Interface

NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] describes all interfaces required for the radio/telephone headset interface. The telephone system provider shall provide this interface if the telephone system does not support integrated functionality that complies with the recommendations made in this document.

3.10 PSAP Alarms

In addition to the PSAP alarm recommendations described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2], special attention should be given to the potential failure points that now exist with Intelligent Workstations. The following table shows the potential failure points for both the telephone (voice) and data elements of the system.

<table>
<thead>
<tr>
<th>Telephony (Voice)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (AC/DC)</td>
<td>Power (AC/DC)</td>
</tr>
<tr>
<td>ANI controller and/or PBX/ACD</td>
<td>ALI Controller</td>
</tr>
<tr>
<td>Telephone set/interface device</td>
<td>Workstation computer</td>
</tr>
<tr>
<td></td>
<td>Computer network (LAN/WAN)</td>
</tr>
</tbody>
</table>

3.10.1 IWS Specifications

The minimum requirements for alarm interfaces shall be through a network management tool or internal messaging such as, but not limited to SNMP. Due to the nature of the various operating systems (OS) utilized with Intelligent Workstations, certain conditions such as OS failure may not be able to produce alarm messages. In such cases external monitoring devices are desirable. These remote alarms can be interfaced through traditional methods as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] or with LAN/WAN or TCP/IP connectivity as described in this document.

3.11 TDD/TTY Interface

NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] describes all interfaces required for the TDD/TTY interface. The telephone system provider shall provide this interface if the telephone system does not support integrated TDD/TTY functionality that complies with the recommendations made in this document.

It is desirable that the telephone systems support this interface in order to accommodate future requirements for ancillary devices not yet covered in this document.
3.12 Transport Control Protocol/Internet Protocol (TCP/IP)

The use of TCP/IP for data message exchange both on Local Area Networks (LAN) as well as Wide Area Networks (WAN) is recommended due to its reliability, flexibility and industry wide acceptance.

TCP/IP is a message oriented data communications protocol that allows for the standard message exchange of various standard communications functions. It also has a built in routing protocol that can be used by an intermediary network to route messages to any other TCP/IP entity on the network. This allows messaging to occur between various equipment types located at any point on an interconnected network.

For a description of the TCP/IP protocols, please refer to the Information Sciences Institute RFC: 793 and RFC: 791 documents.

3.13 Physical Interfaces

The most common interface in use is the TIA-232-F interface. This section will only attempt to summarize the most common applications of the interface used in the 9-1-1 environment. For a complete description of RS-232, please refer to NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2].

3.14 Intelligent Workstation Integration

In addition to the CAD interface/integration described in this document many other applications could be integrated within the Intelligent Workstations.

It is recommended that PSAP’s have the 911-system vendor/integrator recommend and approve the Intelligent Workstation computer hardware requirements. This should be based upon the various applications required to run on the Intelligent Workstation.

These recommendations must be reviewed and re-approved when any changes are made to the baseline system configuration delivered.

The PSAP must recognize that the number one priority of the Intelligent Workstation is the processing of the 911 call. No third-party applications must interfere or interrupt this operation.

4 PSAP Feature Requirement Specifications

In addition to the PSAP features described in the NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] document the Intelligent Workstation should offer a selection of additional features that can be configured on a per log-in basis within the system. The following provides a list of additional features that could be made available.

All screen resources shall be accessible by either a keyboard command, a pointing device or touchscreen.

4.1 Telephone Functions

The Intelligent Workstation shall allow call takers to have on-screen access to all telephone features. These shall include the following as a minimum:
• Hold
• Re-dial
• Release
• Cancel Transfer / Function
• Transfer / conference
• Answer / Off hook
• Dial
• Line Status Indication
• Hook Flash or Equivalent
• Direct trunk/line access

4.1.1 Queuing (Optional)
Queuing is an automated process by which calls are presented in a predefined sequence to a call taker. This functionality may be implemented as a complement to the basic telephony IWS functionality.

It is desirable to include call queue(s) that can be configured with different line types and characteristics.

Call queue functionality should provide:
• Number of calls in queue
• The time oldest call has been in queue
• The trunk number or line number of the incoming call
• Line status, e.g., ringing, off-hook

4.2 Pre-recorded Greetings (Optional)
The Intelligent Workstation may provide advanced record, playback and digitized voice functions for the purpose of pre-recorded greetings. The system could have the ability to record personalized greeting announcements, i.e., "9-1-1 What is your emergency?" that can be played upon initial call taker connection.

4.3 Automatic Number / Location Identification
ANI/ALI information access is an essential requirement of any E9-1-1 system. As such the IWS shall display the ANI and ALI as received from the E9-1-1 network, or in a reformatted structure. This information could be captured to support various features such as supplemental ALI information, premises information, call history, etc.

4.3.1 Field Triggered Features
With information being added to the ANI/ALI for new requirements, it is desirable that the Intelligent Workstations provide certain functions dependent upon data contained in defined fields within the ALI being received. For example, a call could be automatically flagged as coming from a wireless carrier, ALEC, PBX, etc.
4.4 Feature Buttons
The Intelligent Workstation shall provide buttons to allow for "point & click" access to frequently used features and commands.

4.5 Call Detailing
It is desirable for certain applications that the Intelligent Workstation allow the call-taker to select a designated call type, such as fire, auto accident, B & E, after the initial response from the caller. The system shall present the call-taker key questions relative to the emergency at hand. The call types shall be configurable by the PSAP.

4.6 Language Selection
It is desirable that the Intelligent Workstation allow the call-taker the ability to change the language of the various communication elements of the user interface. Examples of this are TDD/TTY messages, medical priority messages, etc.

Note: Certain international character sets may not be supported by the IWS.

4.7 Message Board
It is desirable that the Intelligent Workstation allow supervisors and other users as deemed necessary to have access to an on-line message board. This allows the broadcast of a visual message to each workstation or a select group of workstations in the PSAP without interrupting the call-taker activity. The system shall also have the ability of allowing the call-taker to acknowledge the message sent by the supervisor.

4.8 Call Transfer Functions
It is desirable that the Intelligent Workstation be able to expand the variety and volume of information that can be transferred over the existing standard technology. The system could be programmable to recommend primary transfer destination based on the type of call. The call-taker could have the ability to send different types of information, such as ANI/ALI, additional location data, or even a script of the incident's questions and answers. The system could have the ability to allow this data to be transferred simultaneously to multiple locations (Police, Fire, etc.). The system could also allow for data to be transferred in a variety of communication modes to access faxes, other Intelligent Workstations, and printers.

4.9 TDD/TTY Functionality
The Intelligent Workstation shall provide an integrated TDD/TTY detector for all lines. The device should detect Baudot tones. The system shall allow the call-taker to communicate freely by using the keyboard or by using pre-programmed TTD/TTY messages.

4.10 Management Information System (MIS)
It is desirable that the Intelligent Workstation should be able to access some type of Management Information System (MIS). In addition to the MIS recommendations provided in the NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] document, it is desirable that the Intelligent Workstation provides the supervisors and PSAP managers a package of data handling...
tools. These tools could allow the viewing of the center's activity, as it happens, the ability to see
detailed information on active or historical incident. Supervisors and managers should have the
capability of filtering and viewing data in any number of ways, including viewing all active calls, all
abandoned calls, view incidents by type or by ANI/ALI information. Multiple filters could be able to
be combined to view information in even greater detail, for example, the supervisor could see all
incident of a specific type that took place in a particular area, during a specific time period. All of
these allow for better analysis, reporting and resource management.

5 Power Requirements

recommendations for the power requirements of PSAP equipment, including Intelligent
Workstations.

6 Physical and Electrical Environment Requirements

recommendations for the physical and electrical environment requirements of PSAP equipment,
including Intelligent Workstations.

7 Installation, Maintenance and Administration

In addition to the recommendations in the NENA-STA-027 NENA E9-1-1 PSAP Equipment
Standards [2] document for the installation, maintenance and administration requirements of PSAP
equipment, the following recommendations pertain to IWS applications.

7.1 Interfaced-System commands Maintenance Event Log (Optional)

Event logs are useful in troubleshooting and post-call analysis and should be provided in the IWS.

7.1.1 User Interface Event Log

It is desirable that the Intelligent Workstation be able to provide a user action log capturing all the
activity pertaining to a specific call. Every action stored should be date/time stamped and marked
with the call-taker's identification.

It is desirable that a user-action event log be available at the IWS. This would allow for a “trace” of
the commands that the IWS is subjected to by the user. This information would be used to monitor
system response to user commands; this monitoring may be required to diagnose problems during
the installation and maintenance of the IWS.

The user-action event log should be implemented to allow concurrent monitoring of any and all
workstations, simultaneously. The information generated should be buffered (to RAM or media) for
a minimum period of 24 hours. The enabling of this function should be transparent to the user, and
not impact the usability of the IWS. The retrieval and storage of the log should be provided for the
review and analysis of system response. The data (in ASCII text format) may be output in real time
via any NENA approved interface as described in NENA-STA-027 NENA E9-1-1 PSAP Equipment
Standards [2]. Each event in the log should be date and time-stamped. The identification of the
position and/or user should be included in the log.
The user-action event log should be available for the IWS application. If the IWS application is running concurrently with other applications on the same “client” computer, the log should, as a minimum, keep track of all user commands directed to the IWS application.

Note: It is desirable that each individual application running on the same computer provide the same monitoring capability.

7.1.2 External Interface Event Log

It is desirable that IWS applications which can accept commands from interfaces (either from without or within the same computer) keep track of those commands in the event log. This is intended as an aid in the installation and maintenance of such interfaces.

7.2 Remote Maintenance

In addition to the PSAP remote maintenance features described in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] the Intelligent Workstations should allow LAN/WAN or TCP/IP connectivity as described in this document. This should be to both receive alarm messages and remotely diagnose the system.

8 Registration Requirements

NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] provides all recommendations for the registration requirements of PSAP equipment, including Intelligent Workstations.

9 Quality and Reliability

Refer to the quality and reliability recommendations provided in NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2].

9.1 Reliability Objectives

No single point of failure in any hardware or software component of the E9-1-1 PSAP system shall cause more than 50 percent failure of the E9-1-1 PSAP system.

NENA-STA-027 NENA E9-1-1 PSAP Equipment Standards [2] defines the various E9-1-1 PSAP components. In addition, the following components are applicable for Intelligent Workstations:

- CPUs
- Servers
- Operating systems
- Software applications
- System Physical Architecture and Distribution
- Wiring
- Hubs
- Routers
- Fusing
- Any electronic element or device within the E9-1-1 system
The minimum acceptable service for an E9-1-1 PSAP system in the event of a single component failure would be as follows:

a) At least 50 percent of the E9-1-1 trunks and 50 percent of the attendant positions shall be operational and have the minimum following functionality:
 - Audible and visual indication of incoming 9-1-1 call
 - Voice communications with the 9-1-1 caller

b) It is desirable for the vendor to provide at least 50 percent of the 9-1-1 trunks and 50 percent of the attendant positions be operational and have the following additional functionality:
 - ANI information
 - ALI information
 - Protection switching to redundant components may be required to meet the above outage standards. If protection switching of any E9-1-1 PSAP component is utilized, it must be performed on an automatic basis. There shall be no disruption in the minimum functionality of the calls in progress during switch over.

Note: Consult with vendor(s) for specific operational impact.

9.1.1 Backup and Restoration

It is desirable that the Intelligent Workstations have the capability of backing up critical data to an external storage device or to the server. This data shall allow the complete recovery of a workstation in the event of a failure.

10 NENA Registry System (NRS) Considerations

Not Applicable

11 Documentation Required for the Development of a NENA XML Schema

Not Applicable

12 Impacts, Considerations, Abbreviations, Terms, and Definitions

12.1 Operations Impacts Summary

It is unlikely that this document will have any operations impacts on the mature E9-1-1 Intelligent Workstation environment.

12.2 Technical Impacts Summary

It is unlikely that this document will have any technical impacts on the mature E9-1-1 Intelligent Workstation environment.

12.3 Security Impacts Summary

It is unlikely that this document will have any security impacts on the mature E9-1-1 Intelligent Workstation environment.
12.4 Recommendation for Additional Development Work

In anticipation of the deployment of NG9-1-1 products and services, there is no expectation of additional development work in E9-1-1 PSAP equipment.

12.5 Anticipated Timeline

Deployment and implementation of E9-1-1 PSAP equipment is currently established. Transition to NG9-1-1 is underway.

12.6 Cost Factors

N/A

12.7 Cost Recovery Considerations

N/A

12.8 Additional Impacts (non-cost related)

The information or requirements contained in this NENA document are not expected to have new 9-1-1 technical or 9-1-1 center impacts, based on the analysis of the authoring group.

Continued use of older CPE specified in this document that may introduce vulnerabilities based on:

- Obsolete equipment that loses support or availability
- High support costs compared with new products.
- Security
- Limited features compared with newer technology products and services

12.9 Abbreviations, Terms, and Definitions

See NENA Master Glossary of 9-1-1 Terminology, NENA-ADM-000 [1], for a complete listing of terms used in NENA documents. All abbreviations used in this document are listed below, along with any new or updated terms and definitions.

13 Recommended Reading and References

[1] NENA Master Glossary of 9-1-1 Terminology, NENA-ADM-000
[2] NENA E9-1-1 PSAP Equipment Standard, NENA-STA-027.3 (originally 04-001)

Refer to this document for the following appendices:

- Appendix A - Automatic Location Identification And The Data Management System
- Appendix B - Uninterruptible Power Supply
- Appendix C - TVSS Selection Criteria
- Appendix D - TDD/TTY Pre-Programmed Messages
- Appendix E - EIA DB-25 AND DE-9 LEAD DESIGNATION

[3] NENA PSAP Master Clock Standard, NENA-STA-026
ACKNOWLEDGEMENTS

NENA Board of Directors Approval Date: [MM/DD/YYYY] (Will be added by the CRM.)

NENA recognizes the following industry experts and their employers for their contributions to the development of this document.

<table>
<thead>
<tr>
<th>Members</th>
<th>Employer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rick Blackwell Committee Co-Chair</td>
<td>Greenville County SC E9-1-1</td>
</tr>
<tr>
<td>Michael Smith Committee Co-Chair</td>
<td>Equature/DSS Corp.</td>
</tr>
<tr>
<td>Amy McDowell, Working Group Chair</td>
<td>Greenville County SC E9-1-1</td>
</tr>
<tr>
<td>Mike Vislocky, Technical Editor, Assistant to Amy McDowell</td>
<td>Network Orange Inc</td>
</tr>
<tr>
<td>John Geib</td>
<td>Mission Critical Partners</td>
</tr>
<tr>
<td>Lisa Wirtanen</td>
<td>AT&T</td>
</tr>
<tr>
<td>Phil Rotheram</td>
<td>Atos Public Safety</td>
</tr>
<tr>
<td>Dan Mongrain</td>
<td>Bell Canada</td>
</tr>
<tr>
<td>Roger Marshall</td>
<td>Comtech Telecommunications Corporation</td>
</tr>
</tbody>
</table>

Special Acknowledgements:

Delaine Arnold, ENP, Committee Resource Manager, has facilitated the production of this document through the prescribed approval process.

The Agency Systems Committee Document Review Working Group is part of the NENA Development Group that is led by:

- Pete Eggimann, ENP, and Jim Shepard, ENP, Development Steering Council Co-Chairs
- Roger Hixson, ENP, Technical Issues Director
- Chris Carver, ENP, PSAP Operations Director